Learning Summary(1)

公开课

Machine Learning 2021 Spring:(p1-p20)

  • machine learning还有deep learning的基本概念(机器学习类别:Regression Classification Structured Learning
  • training 基本步骤 (Model with unknown parameters,Define Loss,Optimization)
  • training 问题(model bias、overfitting、Gradient disappearance)
    • Escaping saddle points along the direction of eigenvectors of the Hessian matrix
    • Batch and Momentum
    • Adaptive Learning Rate
    • Batch Normalization
  • Classification with CNN

Pytorch

PyTorch Fundamentals by MicroSoft

  • 了解PyTorch的基本模块及方法(Tensor, Datasets&&Dataloaders, Transform, nn.Module, opim)
    • Fashion-MNIST dataset
    • Build a neural network(Flatten, Linear, Relu, Softmax)
    • Loss Function: CrossEntropyLoss( )
    • Optimizer: Stochastic Gradient Descent
    • Save and load the model
  • Computer Vision with PyTorch
    • MNIST Dataset
      • from DNN, MLP to CNNs(nn.Conv2d)
      • Multi-layered CNNs and pooling layers(Average Pooling, Max Pooling)
      • Validation Accuracy : DNN - 89%, MLP - 96%, Simplest CNN-97%, Multi-Layers CNN-98%
    • Training with real images from the CIFAR-10 dataset
      • LeNet proposed by Yann LeCun.
    • Cats vs. Dogs Dataset(use 2000 pictures due to the limitation of cpu)
      • use pre-trained model VGG-16 from torchvision module
      • Extracting VGG16 features manually for training
      • Transfer Learning
        • replace the final classifier with 25088 inputs and 2 output neurons
        • freeze weights of convolutional feature extractor
      • Validation Accuracy:99%
    • Other computer vision models(ResNet、MobileNet)

Next Week

  • Natural Language Processing with PyTorch
  • Audio Classification with PyTorch
  • Start learning more details of PyTorch