MobileNet
Lightweight networks and MobileNet
复杂的网络需要大量的计算资源,如GPU。然而,事实证明在大多数情况下,一个参数数量少得多的模型仍然可以被训练得表现相当好。换句话说,模型复杂性的增加通常会导致模型性能的小幅(非比例)提高。我们在模块的开始阶段训练MNIST数字分类时观察到了这一点。
复杂的网络需要大量的计算资源,如GPU。然而,事实证明在大多数情况下,一个参数数量少得多的模型仍然可以被训练得表现相当好。换句话说,模型复杂性的增加通常会导致模型性能的小幅(非比例)提高。我们在模块的开始阶段训练MNIST数字分类时观察到了这一点。
use image classification tasks to learn about convolutional neural networks, and then see how pre-trained networks and transfer learning can improve our models and solve real-world problems.
PyTorch provides two data primitives: torch.utils.data.DataLoader
and torch.utils.data.Dataset
that allow you to use pre-loaded datasets as well as your own data. Dataset
stores the samples and their corresponding labels, and DataLoader
wraps an iterable around the Dataset
to enable easy access to the samples.
Welcome to Hexo! This is your very first post. Check documentation for more info. If you get any problems when using Hexo, you can find the answer in troubleshooting or you can ask me on GitHub.